
Technical Repo -t

8(3

to
C-4

On Random Correlation Matrices

DTIC
JAN 2 5 8 R.B. Holmes

BEST
AVAILABLE COPY 28 October 1988

Linco!n Laboratory
MASSACM[USET-TS INSTITUTE OF TECHNOLOGY

LEXINGTON. MASSACHWSETTS

Prepared for the Department of the Air Forec
under Electronic Systems Division Contract F19628-85-C-0002.

Approved for pubic release, distribution unlimIted.

-'55



The work reported in this document was performed at Lincoln Laboratory, a
center for research operated by Massachusetts Institute of Technology, with the
support of the Department of the Air Force under Contract F19628-85-C-0002.

This report may be reproduced to satisfy needs of U.S. Government agencies.

The views and conclusions contained in this document are those of the contractor
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the United States Government.

The SD Public Affairs Office has reviewed this report,
and it is releasable to the National Technical Information
Service, where it will be available to the general public,
including foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Hugh L Southall, Lt. Col., USAF
Chief, ESD Lincoln Laboratory Project Office

Non-Uncoln Recipients

PLEASE DO NOT RETURl

Permission has been granted by the Contracting
Officer to destroy this document, when it is no
longer required by the using agency, according to
applicable security regulations.



MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

ON RANDOM CORRELATION MATRICES

R.B. HOLMES

Group 32

TECHNICAL REPORT 803

28 OCTOBER 1988

Approved for public release; distribution unlimited.

Arcesi) Por
NTIS, Ci-';-p

DTIC TA:5 []

JUh ns .2 :'

By .........

Dist ,

LEXINGTON 19l __ _MASSACHUSETTS



ABSTRACT

This report contains a detailed study of random correlation matrices, including algebraic,
statistical, and historical background. Such matrices are of particular interest because they
serve to model 'average signals' for simulation testing of signal processing algorithms. The
latter half of this report extensively discusses the statistical behavior of spectral functions
of the two major types of random correlation matrices, from both theoretical and
empirical aspects. Our emphasis then, is on eigenvalue distribution and condition number
behavior. Actual application to algorithm testing will be described in a subsequent report.
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ON RANDOM CORRELATION MATRICES

I. INTRODUCTION

This report is based on a study of the relative efficacy of certain (group-theoretic) data trans-
forms for various canonical signal processing tasks. Two such tasks are, in particular, data com-
pression and decorrelation. For a given data transform, realized as a unitary matrix U, the extent
of such activity can be measured from the transformed data covariance matrix. Thus if a data
vector x has covariance C, its transform Ux has covariance D = UCU*, and the data compression
(respectively decorrelation) efficiency of the transform U can be assessed by examination of the
diagonal (respectively off-diagonal) entries of D.

In order to make a serious statistical study of the efficiency of group transforms and filters
for the various signal processing tasks, it is necessary to have an assortment of standardized sig-
nal models. These fall into two classes: parametric models and 'purely random' models. The
former determine after sampling structured covariance matrices with entries having a simple
dependence on a few parameters. The simplest and most familiar example of this model type is
the first-order Markov or auto-regressive signal model, from which N samples generate the covar-
iance matrix [pli-il], where 0 < JpJ < 1, and I < i, j <, N. It is somewhat less clear, a priori, what
a 'purely random' covariance structure might be. The object of the following sections is to clarifiy
and discuss the term 'purely random'. Speaking intuitively for the moment, this term must be
precisely defined if we are to seriously simulate the action of the various transforms, and to even-
tually say that one or another of them, for fixed data dimension, is superior in the performance
of a particular task 'on the average.'

1.1 Definitions

In the background we have an N-dimensional real or complex-valued second order random
vector x. We will usually assume that x has 0-mean: E(x) = 0, the zero vector. The covariance
matrix of x is the N X N matrix Cx defined by

Cx = [E(xi.Rj) ]

Such matrices are characterized as being Hermitian and positive semidefinite. We will in fact
always assume that CX is actually positive definite, so as to eliminate degenerate probability den-
sity functions. Hence the eigenvalues {A\ .... hN of Cx are all positive: they constitute the spec-
trum a(Cx) of C,, and their relative size will always be indicated by subscript:

XI > X2 >.. > XN > 0

We recall the statistical significance of these eigenvalues: letting {1 ..... 'ON} be the ortho-
normal set of eigenvectors corresponding to XI, ... ,N, we have

(a) Ai = var(< xoi>)

(b) tr(Cx) Al + -... + XN  = E(llx112)

(c) Xm+ +... + N = min E(d(X,Sm) 2), m 1 ..... N-
Sm



The assertion here is that k i is the variance of the ith principal component of x; these random
variables occur as the coefficients in the expansion of x in the (Karhounen-Loeve) basis

01 . .- - ON . Statement (b) is a special case of (c) (take m = 0, there). The final assertion is
that the best mean square approximation to x by m-dimensional subspaces, Sm , occurs when Sm
is spanned by 01, .... , m , with error as the indicated function of the eigenvalues. For appli-
cations of these and related formulas to multivariate statistics, pattern recognition, and signal
processing (estimating x from noisy observations), see, respectively References 1, 2, and 3.

From now on we will make a slight specialization by assuming that all components of the
random vector x have the same variance, which we take to be unity. It follows that the diagonal
of C. consists of ones, tr(C.) = N, and the modulus of each off-diagonal entry cij satisfies
{ci { < 1. These entries are, in fact, the correlation coefficients of the i and j components of x.
Any such matrix is called a correlation matrix, and will be our primary object of study. Bounds
and estimates for various quantities associated with such matrices are reviewed in Section 3. Here
we note that if C is any N X N correlation matrix, then K< IICJI = X,< X1 + + • . + = N, so
that the set P(N) of all such C is a compact convex subset of the N(N + 1)/ 2 -dimensional real
space of N X N Hermitian matrices. (If the scalars are complex, this latter space is of real dimen-
sion N2.)

In general, it is difficult to tell by inspection whether a given symmetric or Hermitian matrix
C with diagonal entries equal to one is positive definite, and hence a correlation matrix. Several
nonlinear inequalities involving the off-diagonal entries must be satisfied; these correspond to the
positivity of the leading principal minors of C. For example, given real numbers b, c, d in (-1,1).
the matrix

I b c

b I d]c d 1

is a correlation matrix if and only if

b2 + c2 + d2 < I + 2bcd.

Two simple sufficient conditions for positive definiteness are available, however:

(a) C is diagonally dominant, so that the Gershgorin theorem can be applied, and

(b) C can be partitioned as

P* 12

where the l's are identity matrices, and F is a matrix whose (spectral) norm is less than one.
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1.2 Notions of Randomness

We now want to address the question of randomly selecting a correlation matrix of some
fixed size. Our particular interest in this question has already been indicated in the introductory
remarks above, and further motivation will be provided in the next section; in general we may
say simply that a satisfactory answer to this question will permit generation of random test prob-
lems for a variety of statistical methods.

Roughly speaking, any method of generating random correlation matrices will begin by
generating some number of pseudorandom variates uniformly distributed on the unit interval, and
then performing certain deterministic mathematical steps to arrive at a correlation matrix. Four
possible such methods will be described below, and two will be discussed at some length. But we
have to acknowledge at the outset that no method is completely satisfactory. This is due to the
lack of structure of the set (N) on the one hand, and to the presence of structure in the indi-
vidual members of r(N) on the other hand. That is, each element C of I(N) has associated with
it, as a matrix, entries, eigenvalues, and functions of these, such as norm, condition number, etc.,
all of which become random variables with their own distributions which naturally depend on the
manner in which C was produced. But the set r(N) does not carry a natural invariant measure.
This deficiency may be contrasted with the cases of the orthogonal or unitary groups, which
carry a canonical (unimodular) Haar measure. Nor is r(N) a homogeneous space, such as a
sphere, on which a transformation group acts and leaves invariant some measure. Thus, while
such phrases as 'random orthogonal matrix' and 'uniform distribution over the unit sphere SN-I,
have a clear conceptual meaning, and indeed there exist successful numerical procedures for
generating such variates (see in particular References 4 and 5 for the former case), the situation
remains murky for correlation matrices.

As a brief aside we offer two remarks. First, the topics of approximating and efficiently
sampling from the uniform (Haar) distribution on finite or compact groups persist under current
investigation. In addition to the references just given for the case of the orthogonal group. see
recent articles by L. Takacs 6 for finite groups, and by P. Diaconis and various coauthors (Refer-
ence 7 and its references) for an assortment of groups and applications. The basic approximation
result, that the distributions of the successive terms in a random walk on a compact group con-
verge vaguely to normalized Haar measure provided that the support of the common distribution
of the individual terms is sufficiently diffuse, goes back at least to Grenander. 8 The condition on
the support of the distribution can also be rephrased as a spectral property of its (operator-
valued) Fourier transform. Second. although as noted above. I(N) is not a homogeneous space-
the cone P(N) of all positive definite N X N Hermitian matrices is such a space. Namely. it is
acted on by the general or special linear groups according to the rule

A - T A T*

for A e P(N) and T nonsingular. It follows from general theory, including the fact that these lin-
ear groups are unimodular, that there is an invariant measure on P(N). 9
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Returning now to the matter of random correlation matrices we indicate four possible
methods of generation; only the last two will be discussed in any detail, beginning in the next
section.

Method 1: Direct Acceptance - Rejection

Here one must obtain symbolically the leading principal minors of the general symmetric
N X N matrix with unit diagonal. This is possible for moderate size N via a computer algebra
program. Requiring these minors to be positive then constitutes a set of N - 2 nonlinear con-
straints on the N(N - 1)/2 off-diagonal entries. A set C12 . . . . . CIN, C23 . . . . . C2N. CNI. N
of pseudorandom deviates uniformly distributed on (-I,), or in the open unit disc, is generated.
and tested to see if the constraints are satisfied. If the constraints are satisfied, a correlation
matrix C is obtained: if not, a new set of uniform deviates is generated, etc. Clearly this method
is at best feasible for rather small values of N, say N <, 8. To the author's knowledge, the distri-
butional aspects of the spectral features of the resulting matrices are unknown.

Method 2: Perturbation about a Mean

This method is discussed by Marsaglia and Okin,10 which is generally the most current
source of information about our subject. However, for our purposes, there is no reason to have
in mind any a priori mean value.

Method 3: Random Spectrum

As we know, the spectrum of an N X N correlation matrix consists of N positive numbers
(not necessarily distinct) that sum to N. As will be recalled in the next section, every such set of
N numbers occurs, so that the possible spectra fill out a simplex in real N-space. Since it is
numerically feasible to generate pseudorandom uniform samples from this simplex, we can, by a
succession of suitably chosen orthogonal or unitary transforms, arrive at a random correlation
matrix. An automated procedure for doing this latter task is commercially available in the
IMSL subroutine GGCOR. Statistical aspects of this method will be discussed at some length in
Section 4.

Method 4: Random Gram Matrix

As is well known, every real positive definite matrix A has a Cholesky factorization

A = TT*

where T is a uniquely defined lower triangular matrix with positive diagonal entries. Let the rows
ot T be denoted t i . .. tN . Then

aij = <ti,tj>

and so A can be considered a Gram matrix defined by the vectors {t, . . . . . tN} If also A is a

correlation matrix, then each vector ti must have length I. Consequently, any procedure for
generating pseudorandom unit vectors, with any distribution, will result in a random correlation
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matrix of Gram type. These vectors may or may not end in zeros, as in the Choleskv factoriza-
tion. but naturally we do less work if they do. This method is the most efficient of the general
methods 1. 3, and 4. some of its statistical aspects will be discussed in Section 5 (see also Refer-
ence 10 again).

The method we might eventually choose for a particular application will depend on the
nature of the application and just which aspect of the random correlation matrices we wish to
have an unambiguous uniform distribution.

1.3 Background and Motivation

In terms of the preceding introductory material, and prior to the more technical develop-
ments of the remaining sections, we will briefly review some of the relevant statistical literature.
Specifically, we will comment on the contents of four articles, References 1, 12, 13, and 10,
listed in chronological order.

Chalmers (1975, Reference !1) presents an algorithm which produces correlation matrices
with a common spectrum. His motivation is the study of strongly structured data, that is , ran-
dom vectors whose first two or ?.iree principal components explain much of the variability of the
data. Chalmers attempts to distinguish between causes of the observed associations among differ-
ent subsets of the components of the data, and whether these causes are due to the physical
nature of the variables themselves, or to some inherent structure in the data as captured by the
underlying principal components. He uses an empirical approach to generate other correlation
matrices with eigenvalues identical to those observed, and then compares results from these
matrices with those from the original data. The algorithm itself is derived from a geometric
lemma which asserts the existence of an infinite set of orthogonal generators to certain quadratic
cones in real n-space. Normalizing these generators then leads to the columns of an orthogonal
matrix which transforms a given diagonal matrix of eigenvalues into the desired correlation
matrix.

Bendel and Mickey (1978, Reference 12) address the same problem as Chalmers, but more
systematically, and with more concern for whether the resulting correlation matrices are truly
,representative' of the entire class of correlation matrices with given spectrum, thought of as those
which could arise from a given experiment. Bendel and Mickey note that parameterizing subsets
of F(N) by structure, e.g., equi-interclass correlation (constant off-diagonal entries) or first order
autoregressive (Markov-I data) leads to very narrow classes of correlation matrices, unsuitable
for many applications. Their approach is to treat the eigenvalues as parameters, especially when
they in turn are functions of one or two parameters. For example, the eigenvalues might be
required to form a geometric progression. In general, if the parameterized eigenvalues are roughly
constant, and therefore approximately equal to 1, the data variables are approximately indepen-
dent, while a large spread in the range of the eigenvalues indicates strong interdependence
between the variables.

5



Starting with a spectrum IA, ..... ANJ and setting D = diag kIx.....N', the method of

Bendel and Mickey yields a correlation matrix C of the form

C = U*DU

where U = VRN_! ... R2R1 . Here V is a randomly chosen orthogonal (or unitary) matrix and
the R's are matrices representing Givens rotations, chosen successively to make one diagonal
entry at a time of the product equal to 1. The V's can be generated by various procedures: see
the references4.5 already mentioned in Section 1.2. Bendel and Mickey go on to describe the
application of their method to the problem of stopping rules in the statistical procedure known
as stepwise regression. They also offer some comparisons between their method and that of
Chalmers.

Johnson and Welch (1980, Reference 13) also emphasize the use of simulated data to test
alternative selection procedures in stepwise regression, particularly to build confidence in the use
of such procedures on real data with uncertain structure. If the joint distribution of the depend-
ent and regressor variables is Gaussian then it is standard to sample randomly from it by factor-
ing the covariance matrix and using a string of pseudorandom N(0,1) variates (c.f. IMSL subrou-
tines GGNSM). Thus only the structure of the distribution remains to be specified, and this, of
course, is completely determined by the (mean and) covariance. If this is assumed, as they do, to
be of correlation type, then it can be partitioned as

P

where C is the intercorrelation matrix of the regressors, and p is the vector of correlation coeffi-
cients between the regressors and the dependent variable. So the emphasis is on generating such
C's, and this is done by viewing C as a Gram matrix: C = TT*, with the rows of T being unit
vectors. Johnson and Welch suggest generating each entry of T from a symmetric beta distribu-
tion, varying the free parameter from row to row. They note that a certain control over some
aspects ot the matrices so defined can be maintained, such as the degree of correlation between
some regressors, and the coefficient of determinatioai for the complete regressor set.

Finally, Marsaglia and Olkin (1984, Reference 10) give a rigorous mathematical description
of Methods 2 through 4 described in the preceding section. Their major result is to obtain the
explicit form of the distribution of the entries of a random Gram correlation matrix C = TT*.
when the entries of T are generated in a particular fashion. Some of this work will be reviewed
later, in the appropriate context.
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2. TWO PRINCIPAL METHODS

As noted in Section 1.2, only the methods labeled as (3) and (4) are to be discussed in any
detail herein. We begin this discussion now, setting the stage for the new results which will be
presented ater on, after a review of some salient linear algebra (see Section 3).

2.1 Random Spectrum

As we know, the spectrum of a correlation matrix C c F(N) has a spectrum a(C) = {A1. N1
consisting of N positive numbers of sum N. The set of all such N-tiuples defines a simplex SN ,
and we first want to observe that every point in SN occurs in this fashion, that is,

U{c(C): Ce F(N)} = SN

This is a consequence of a general characterization of Hermitian matrices due to several authors.
Namely, if A is a Hermitian matrix of order N with eigenvalues XAI >- .. >1 X, and diagonal
entries d1 >I. dN, then

d I +...+dk X+...+ Xk (2.1)

for I <k <N - 1, and

d I +...+ dN = X +..+N = tr(A) (2.2)

(Schur, 1923). Conversely, given real numbers {dj,Xi } satisfying all these conditions, there exists a
real symmetric matrix A with diagonal entries dI,...,dN, and eigenvalues Xl,...,XN [Horn (Refer-
ence 14), Mirsky (Reference 15)]. In our case, however, the result follows more directly from a
theorem of Fillmore, 16 namely that any matrix A is unitarily equivalent to one with a constant
diagonal. This in turn is an easy consequence of the convexity of the numerical range W(A), so
that tr(A)/N e W(A), and an induction argument.

The upshot of the above paragraph is that given (X ,...,AN) f SN there is a correlation matrix
C with these numbers as its spectrum. How, in practice, is such a matrix to be obtained? As
already noted, answers have been given by Chalmers and Bendel-Mickey; there is also the paper
by Chan and Li 17 which more generally provides an algorithm for constructing a real symmetric
matrix with given diagonal entries and eigenvalues satisfying the conditions (2.1) and (2.2). It
appears that for present purposes the most natural method of obtaining the matrix is that pro-
posed by Bendel and Mickey, namely,

C = R*.1...R R' D R, R2... RN. (2.3)

where D = diag[Xl,...,XN], and Rk is a rotation in the plane spanned by the standard unit vectors
2 k and 2k+I. The matrix Rk has the form

I'k-
-S C

'N-k-I
with c2 + S2 = I. The rotation angle, arc cos(c), is chosen so that the k-th diagonal entry of C is 1

7



We can strengthen the preceding remark by replacing the diagonal matrix D in Equa-
tion (2.3) by A = U*DU, U unitary. That is, A is an arbitrary positive definite matrix with spec-
trum {A.....XN}. Then A can still be transformed into a correlation matrix C, as before, and
there are, in fact, exactly 4 choices for each Rk in Equation (2.3).

To see this, consider first the specification of R1. R*IARI should have a diagonal entry 1.
Let Ap be a principal 2 X 2 submatrix of A, say

P [: b]

with a, d > O. Let Q be a 2 X 2 orthogonal matrix, either a rotation

c 
S]

or a reflection [: 2]
Then the upper left entry of Q*ApQ is ac2  2Re(b)cs + ds 2, respectively. From the behavior of
the Rayleigh quotient of Ap, we see that this quadratic form in (c,s) will somewhere assume the
value I if and only if Ap has one eigenvalue < I and the other > 1. Now since a, d are diagonal
entries of A, and tr(A) = N, Ap can be chosen so that one of a, d is < 1, and the other t> 1. Its
eigenvalues k1 I X2 then satisfy

X2 
= min<Apx,x> < min(a,d)

< I < max(a,d) < max<Apxx> < A1

So the condition on Ap is satisfied, and therefore 4 choices of Q exist to yield a I in the upper
left corner of Q*ApQ. R, is then created immediately as a direct sum of Q and an identity
matrix. The whole procedure can then be repeated, since the sum of the remaining diagonal
entries of R* A R, is N - 1.

The preceding remarks are a slight elaboration of some made at the end of Section 4 of
Reference 10. We note that in the discussion so far of this section there are no issues of random-
ness. These can be introduced in two stages. First, if a point (A ...... A) e SN is given, we can form
the corresponding diagonal matrix D, select an orthogonal matrix V at random from the orthog-
onal group O(N) with normalized Haar measure, and select a succession of orthogonal matrices,
one of 4 choices at random at each step, so as to transform V*DV into a correlation matrix C.
This C may fairly be said to be a random correlation matrix with specified spectrum. Second, the
spectrum may itself be chosen from some probability distribution of SN. The resulting matrices
are said to have a random spectrum. The special case where the distribution of SN is uniform
will be discussed at some length in Section 4. Some issues here are that this method is evidently
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rather computationally expensive, and the distribution of the entries of the resulting correlation
matrices is not well understood. However, we will be able to say something about the distribu-
tion of some global features of these matrices.

2.2 Random Gram Matrix

We first quickly review the concept of Gram matrix. Let x,.....xN be linearly independent
vectors in any pre-Hilbert space. The corresponding Gram matrix is the N X N Hermitian matrix
G = G(xI,...,XN) with (ij)-entry = <xi,xj>. The determinant g(x1 ,...,XN) is called the Gramian of
the set {xI ,...,XNI. Clearly the covariance matrix of a set of normalized second order random
variables falls under this definition. In general, Gram matrices are positive semidefinite as follows
from the formula

<Ga,a> & X 11 ii 2 > 0

for any N complex numbers at ... a N . Further, as already noted in Section 1.2, by Cholesky fac-
torization, any real positive definite matrix is a Gram matrix; more generally, any complex posi-
tive semidefinite matrix has a positive semidefinite square root, and so is a Gram matrix.

The Gramians are symmetric functions of their arguments, and obey the inequalities
0 < g(x ! ... X N ) < ]1x I112 ... 11 x s112 (2 .4 )

with equality on the left if an only if {x1}is linearly dependent, and equality on the right if and
only if { x } is orthogonal. To prove the right hand inequality we first reduce to the case that
each xi is a unit vector, and then

g(x,...,XN)I/N = (HI X.)I/N
! 1

-L 1 j -tr(G)- I

where J i} = a(G).

One senses from this that the Gramian and other spectral features of the Gram matrix bear
some relation to the relative orientation of the vectors {xi 1. Along this line we recall that if the
vectors xi belong to RN, then

NV o l( j =i _ ' i < , e

N
g(x l ... X N ) / 2 J J Ei (2 .5 )

so that in particular g(xl,...,XN) is the square of the volume of the parallelepiped spanned by the
set { xi }. If the xi belong to some other space, Equation (2.5) serves to define this volume.

9



In addition to the simple Hadamard inequality in Equation (2.4), we have further
g(x! ..... xm,Y ! .... YN) g(x] ..... Xm) g(Y! ..... YN)

and in fact the ratio of the left side to the right side is known to be sin 2 a,...sin 2 aM, where
a . aM, M N, are the angles between span{xi and span{yj1}.

Gram matrices occur naturally in all manner of least squares problems, such as Gram-
Schmidt orthogonalization, linear regression, and pseudoinversion. Indeed, the basic problem of
computing the orthogonal projection onto span { xi } requires the solution of a linear system with
Gram coefficient matrix. It is familiar that as the basis vectors xi deviate more from orthogonal-
ity, such problems become more ill-conditioned, and associated statistical procedures are said to
suffer from 'collinearity.' For example, if xi(t) is the monomial ti, and the inner product comes
from some Lebesque-Stieltjes measure with compact support, then the corresponding Gram
matrices, indexed by N, have a condition number that grows at least as fast as 4 N; the classical
Hilbert matrices are special cases; 18 the main result of this reference will be discussed later in
Section 3. For a recent review of the collinearity problem with suggestions for its measurement
by more subtle indicators than simply condition number, see Reference 19.

As a reference point for later use, we record here a well-known distance formula involving
Gramians. Let M = span {xI,....xN, and let x be another point in the space containing M. Then

g(xl ..... xN,x)
dist(x,M)2 = (2.6)

Recall that random Gram matrices were defined by Method 4 in Section 1.2. In present
notation the xi are taken to be random vectors uniformly distributed over the sphere SN-I in RN.
We now report some results from a small simulation, intended to compare such matrices with
those of random spectrum (Method 3). We give here only the cases N = 5 and 10, as they appear
typical of all cases considered. In each case, the summary statistics are based on 1000 trials. In
the left column of Table 1, 'c.n.' means condition number, 'F norm' means Frobenius norm, and
'norm' means spectral norm. Also, 'trimmed' means that the largest I percent and smallest I per-
cent of the samples have been deleted.

Probably the most striking contrast to be made on the basis of this numerical experiment is
the excessively high condition numbers of the random Gram matrices relative to those of the
matrices with random spectrum. This aspect of the data persists even after trimming, and after
passing to medians. It strongly suggests that random Gram matrices do not have a random spec-
trum. It also raises interesting questions about the relative orientation of a batch of 2 or more
vectors drawn independently from the uniform distribution on the (N - 1)-sphere. Some of these
will be considered in Section 5 below.

10



TABLE 1

Statistics for Random N X N Matrices

N =5 10 N =5 10

Mean c.n. Ill. 553. 1 .37E6 7.85E6

Standard Deviation 754. 1. 18E4 4.29E8 2.19E8

Median c.n. 15.8 40.5 114. 809.

Interquartile Range 30.7 80.9 446. 3533.

Trimmed Mean 39.2 95.4 1.57E3 1.57E4

Standard Deviation 70.3 157. 5.48E3 6.65E4

Mean F. Norm 2.88 4.24 2.99 4.36

Mean Norm 2.31 2.92 2.43 2.94

Mean Min. E-Value .191 .100 .042 .009

Standard Deviation .161 .093 .054 .012

Random Spectrum Random Gram



3. ASPECTS OF NUMERICAL LINEAR ALGEBRA

This section contains a brief review of some quantitative aspects of linear algebra that are
pertinent to the material that follows. For general background information on matrix theory we
may refer to two recent volumes: Horn and Johnson 20 or Lancaster and Tismenetsky. 21 More
specialized treatments of numerical linear algebra are given by Stewart 22 and Golub-van Loan.23

3.1 Bounds on Norms and Eigenvalues

Given an N X N matrix A we shall have occasion to use its operator or spectral norm

IAll = maxllAxlf/ lxfl: x 0 0}

and its Frobenius norm
IIASIF = (Jlaij2)i / 2

In terms of the positive part P = (AA*)I/ 2 of A, we have

0 < 1All = r0(P) <11 All F = tr(P) (3.1)

where r,(-) means spectral radius. Bringing in the eigenvalues X1 > .. >. 1 XN of A, and the singu-
lar values s I  ->-- sN (these are the eigenvalues of P), we have 1lAil s1, and

N N
S iX2 < ll[ A 112 =  S 2 (3.2)F I

with equality if and only if A is normal (theorem of Schur and Mirsky).

For general matrices A, the singular values have many fascinating properties and applica-
tions, such as min-max characterizations, smooth dependence on A (which leads into perturba-
tion theory), and geometric interpretations as distances from A to spaces of matrices of lower
rank. This latter property, on the one hand, leads into regularization techniques for least squares
signal processing and, on the other, permits generalization to compact operators on infinite
dimensional spaces (s-number theory).

Let us now specialize to the case of primary interest here, namely, that where A = C is a
correlation matrix. Then we have

I < 1iCi = r,(C) = min{illCi}
(3.3)

<, max{I1rowill 1 ,..., llrowNll I I f<N

where flf'jfl refers to a general matrix norm induced by some vector norm, and 1  is the
21-vector norm. The expression "max{.. .}" above is just the matrix norm induced by the
2w-vector norm. Its advantage, as with the bound 1ICifF, is that it is immediately computable
from the entries of C. Either of the extremes 1, N can be reached by some C e r(N). The second
equality is true in much greater generality; in fact, it is true for any operator on a Banach
space. 24
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If A is positive semidefinite, then

ai. I < V'i < -1 (aii+I abi)

showing in particular that all off-diagonal entries of a correlation matrix have modulus < 1. Of
course, such a matrix need not be diagonally dominant.

An improvement on the bound 1CI1I< 11C11F has been noted by Leclerc, 25 specifically for
correlation matrices. Namely,

1CII I + N 1 0) IICIF (3.4)
2

where = sum of squares of off-diagonal entries of C. The right-hand inequality here is strict
unless all off-diagonal entries have modulus= 1. This bound on JICJJ can be either larger or
smaller than the 'max' bound of Equation (3.3).

At this point we have given some upper bounds for IIC11, and hence for all the (positive)
eigenvalues of C. Upper bounds for I C-1 11 are equivalent to lower bounds on the eigenvalues of
C, using 1 C- 1 11 = r0(C-1); note that (C-1), while still positive definite, is no longer a correlation
matrix in general. This kind of bound is not of particular interest to us here, but lower bounds
on IC-'111 are important, in connection with condition number estimates, and will be discussed
later on. Here we will just recall an inequality of Kato, 26 which gives abound on IA-II, for any
nonsingular A:

IIA-111 < IJAIIN-1/ldet(A)i

There are innumerable inequalities pertaining to the eigenvalues of positive definite matrices
(and operators). We mention just two, for products and sums of eigenvalues, due to K. Fan.
With A positive definite and its spectrum ordered as ) > ... > 'N:

N
A'N AN-I k • •k = min lI <Aei, ei>

i=k

k

.k +...+ Ak = max <Aei , e i>

i= I

k = ..... N, where the min (respectively max) is taken over all sets of n - k + I (respectively k)
orthonormal vectors (see Reference 27, Chapter 2, for these and many others).

Finally, we mention the concept of spread of a matrix A. This is the quantity

S(A) = diam a(A) -M-axl\i - , A[ (3.5)
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When A C, a correlation matrix, the following bounds on S(C) can be derived;

2 max JcijJ S(C) (2(I1C11=- N))12
i#J

Since I CI1 = I X,2, the last inequality offers a lower bound on this quantity. But, in fact, a
stronger 2-sided inequality can be established, namely

IS(C)2 N IIII N S(C) 2

2 4

by working with eigenvalues.

3.2 Condition Number Estimates

The condition number K(A) of an arbitrary matrix A is defined by

K(A) = I1 All 11 A+lJ = All A-I 11 (3.6)

where the '+' means pseudoinverse, and the second equality is naturally only applicable if A is
nonsingular. Note that this is the spectral condition number; other matrix norms might be used
in Equation (3.6). In terms of the singular values of A we have

I < K(A) = SO N  (3.7)

with equality if and only if A is a nonzero multiple of a unitary matrix. [Naturally, Equation
(3.7) is restricted to nonsingular A.] Many kinds of singular matrices A can have K(A) = 1; for
instance, orthogonal projections and, more generally, partial isometries.

Condition numbers are widely used as measures of sensitivity of the solution of linear sys-
tems to inaccuracies in the data. Similarly, the condition number of the matrix of eigenvectors of
a diagonalizable matrix measures the closeness of an approximate eigenvalue to the true spec-
trum. Roughly speaking, the percentage change in the (least squares) solution x of the system
Ax = b is bounded by the percentage variation in the data b times K(A), and this bound cannot
be lowered. Thus K(A) is a measure of the inherent resistance of a particular system to accurate
solution, and which does not depend on the particular numerical method employed. The larger
the condition number, the more 'ill conditioned' a particular system is, and the less we can infer
a small error from a small residual.

We might also remark that K(A) can be characterized geometrically by the least angle 0
resulting as A is applied to all possible pairs of orthonormal vectors; precisely

(A) = cot(qi /2)

It is instinctive to want to measure ill conditioning by some function of the eigenvalues, but
this is only fruitful for normal matrices. For example, there is the N X N 'Kahan matrix'
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] -1 -1

0 1

-1

o . . .I

which clearly has all eigenvalues = 1, yet a condition number > v/-2(N -z). However, when A is
positive definite with eigenvalues A ,... X AN, then

K(A) = X/N X (3.8)

and we have the inequality of Kato:

_(A) < 4 tr(A) N

Thus, for correlation matrices C, K(C)det(C) is a bounded function. Note that Equation (3.8)
defines a different notion of 'spread' of the spectrum, in contrast with the quantity S(A) of Equa-
tion (3.5). Also note that Equations (3.7) and (3.8) together imply that

(A*A) = (AAO) = K(A) 2

showing how the familiar 'normal equations' of many least squares procedures can become very
ill-conditioned (and, eventually, motivating the use of factorization methods which deal only with

A, as an alternative).

In 1955 J. Riley2 8 used the fact that

K(A + XI)<_ K(A) (3.9)

for any positive definite A to suggest an iterative improvement procedure for solving an ill-
conditioned linear system Ax = b. This was a forerunner of the ridge regression and regularization
methods of statistics and signal processing, which trade off some bias for lowered mean square
error. The inequality (3.9) was greatly extended by Marshall and Olkin29 who proved that

K(A + B) < K(A)

whenever A and B are positive definite with K(B) < K(A).

We now turn to the matter of lower bounds for condition numbers. These will be of greatest
interest for the case of Gram matrices, but we consider first, briefly, the general case. (We note,
too, the considerable interest in recent years in numerical estimates - not bounds - for condition
numbers, by estimating some norm of the inverse matrix. 30 ,3 1,32

First, if A is any nonsingular matrix, with eigenvalues ordered by modulus: Al 1 > t... >1kN1,
then

k I/,k NI < K(A) (3.10)
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This follows from the relations

IIA-111-1 = inf{lilAxil: Ilxii = 11

<iAell = AI

where e is any unit eigenvector associated with kea(A). Of course, as the earlier example of the
Kahan matrix illustrates, the left side of Equation (3.10) may severely underestimate the true
condition number K(A), when A is not normal.

Now assume that A is positive definite. A variant of the well-known Kantorovich inequal-
ity33 tells us that

(Mi + m2)2

ix12 < <Ax,x> <A'x,x> X 1x12  (3.11)
4mM 2

provided that

m I< A<m 2 I

for 0 < ml1< m2. Taking m, (respectively m2) to be the least (respectively greatest) eigenvalue of
A, and x any unit vector, we obtain

4<Ax,x><A'Ix,x><K+ - +2<K+3
K

yielding a lower bound for K = K(A) for each x. Of course, an estimate involving A-, is not of
great practical value.

Another kind of inequality comes from the theory of Schur (or Hadamard) products of
matrices. We won't review this concept in any detail here; see Reference 34 for a nice survey.
This product, for conformable matrices A, B, is defined by

[A"- Bij = aj "bij

This multiplication, unlike the usual one, is commutative. The original result of Schur is that
if A, B are positive semidefinite, then so is A" B. An inequality of Fiedler (1961) for positive
definite A reads

A • A-1 > I (3.12)

Note that, as a consequence of either this or the left side of the Kantorovich inequality, when C
is a correlation matrix,

[C'- I ,i > I, i = 1,! .... N

In 1982 M. Marcus proved the matrix norm inequality

11A"- B11 < 11AII 11B11

for the Schur product. Taking B = A-1 yields a lower bound for the condition number:

11 A. A-4 1 1< K(A)
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In preparation for part of our discussion in Section 5, we want to consider specifically the
case where A is a Gram matrix:

A: G G(xI .... ,XN)

in the notation of Section 2.2, with each xi a unit vector in some inner product space X. As
aiready remarked in Section 2.2 it has been empirically noted that many common Gram matrices
tend to be ill-conditioned, and an inequality derived in Reference 18 can be used to quantify
these observations by providing a lower bound for K(G) in terms of the relative orientations of
the vectors {xi}. By virtue of our own numerical experiments reported earlier, ill conditioning is
a prominent feature in random Gram matrices also. We will now discuss an improved version of
this inequality, and its sharpness. These results are purely deterministic; statistical implications are
deferred to Section 5.

A fixed Gram matrix G = G(x 1 . . . . . XN), JJxiJJ = , .. . , N will be used. G is a corre-
lation matrix, and IIGII = r0(G), so the problem is to find a lower bound on JIG-I1 in terms of
the vectors {xi}. Let M (respectively Mi) be the subspace of X spanned by {Xj},N (respectively
fxj:j # i}1 N). Let {vj} be the basis for M that is dual to {xj. Also, for an arbitrary real or com-
plex unit vector e (X is real or complex), let b = G-le. Then

JIG'[ 1 <G-1 e,e> = <b,Gb>
11I g xj 112 -- lvl2

Now, with v as just defined, it is easily checked that

b= <xi, v>

so that if v = vi, one of the dual basis vectors in M, then Gb " ei, the standard unit basis vector.

We also observe that, since Mi is of codimension I in M, the duality formula for distance,

dist(x,M i) = max{l*(x)i: ikeS(Mi-L)f (3.13)

for xeM, implies that

di - dist(xi,Mi) = <xi, vi/ jvi >
(3.14)

= 1/ ilvill

Putting all this together, we conclude that

IG- II G > <G-tel, el> hIviIJ2
gi(Xi.... XN)

g(x 1, .. XN)
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where the last equality follows from the Gramian distance formula of Equation (2.6), and "gi'
means the Gramian with xi deleted.

The ensuing inequality

1G-1I 1> max d72  1 (3.15)
min dF

is due to J. Taylor (Reference 18, p. 46). The major difference between Taylor's approach and
the one we are using is that the duality formula Equation (3.13) strengthens the inequality by
avoiding reliance on the Schwarz inequality. Thus the sole source of inequality in Equation (3.15)
is the inequality appearing in Equation (3.14). This inequality is only a measure of the behavior
of the Rayleigh quotient for G-1, and does not explicitly involve the Gram structure of G. Hence
the following theorem and proof gives a measure of the tightness of Taylor's inequality Equation
(3.15).

Theorem sup 1II -N.
A e r(N) max <A-leiei>

Proof For notational ease, we will replace A- 1 by A, and then max J<Aei, ei>: I = 1 ..... Nf
by A(A). We first note that if A is any N X N positive definite matrix,

1 < IIAll/(A) < N

and that these bounds are sharp (within this larger class of matrices). The left inequality is trivial,
and is achieved for diagonal matrices. The right inequality follows from

1All = rt(A) = X1 < tr(A) < NA(A)

To verify its sharpness, let e > 0, and D = diag(l,e, . . . ,e), and apply the theory in Section 2.1 to
obtain A, unitarily equivalent to D, with constant diagonal Then

I = 1All < tr(A)-" N(A)= I + (N - l)e

now let e 1 0. So the point of the theorem is that if the A's are restricted to the class
jA: A- 1 tF(N)}, the upper bound on JJAjI/I(A) does not decrease.

To complete the proof, consider a special family of A's, namely, {A: A al N + B. bij
(I - bij)b , where a > b > 0. We have

11 AllI'/(A) = (a + (N - 0~b)/ia

= 1 + (N - I) b/a (3.16)

and it will be shown that a and b can be chosen so that A- 1 el'(N) and

b
lim - = 1. (3.17)
aloo a
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Let A = det(A). We have

A = (a - b)N'l(a + (N - l)b)

and since the diagonal entries of A-1 are

<A-'ei,ei> : ith-cofactor/A

it follows that

> (a + (N - 2)b)(a - b)N- 2

(a + (N - l)b) (a - b) N- 1

So, if A-' is to be a correlation matrix, a and b must satisfy the equation

a + (N - 2)b = (a - b) (a + (N - l)b).

If we treat this as a (quadratic) equation for b and solve it, we obtain

(a - 1) (N - 2) + ((N - 2)2(a - 1)2 + 4(N - 1) (a2 - a))1 /2

2(N- 1)

After dividing both sides by a, and manipulating, we have

b I N-2 V(N 2 +e)-NI- -] 4.

a a 2N-2 2N-2

where

(N - 2)2  1 4e:(-- -2) - - (N - 1) <0
a a a

This shows that b < a and that the limit in Equation (3.17) is 1, as required. QED

At this point we might justify an assertion made just after Equation (3.3), namely, that

sup IIAIA = N

Aer(N)

We know from that equation that this supremum is at most N. That it is not less than N follows
from consideration of the same family of matrices just used, and the value of the norms of such
matrices given in Equation (3.16): just take a = I and let bt 1.

To sum up: for a Gram matrix G = G(x1 . XN), we have the lower bound on K(G), due to
Taylor:

K(G) I/min di

an equivalent form

g 1(x9..... XN)
K(G)i> max

i (xl..2 XN)
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and an upper bound on the tightness of this lower bound:

1 K G) _ < N2  (3.18)
lower bound

It is possible that this upper bound could be decreased, but we haven't investigated this point.
Some evidence is given below in Section 5.4.

And so, our review and development of numerical linear algebra now complete, we return to
discuss our primary topic where the matrices have a random nature.
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4. CORRELATION MATRICES WITH RANDOM SPECTRUM

Some background for this section was given in Section 2.1. There, two essential steps in
defining correlation matrices with random spectrum were recognized:

- pick a point A = (4I,...,A.N) 'at random' from the simplex SN , and form the
diagonal matrix D = diag(X 1, ....,AN)

- construct a matrix C = R*V*DVR, where V is drawn at random from the orthog-
onal group 0(N), and R is a product of randomly selected rotation/reflection
matrices, chosen to successively put l's on the diagonal of C.

Naturally the second step leaves a(C) = X, and hence leaves all spectral functions of C
unchanged. Among such functions are the spectral and Frobenius norms of C, and its condition
number. (In general, any unitarily invariant norm of a Hermitian matrix is a spectral function of
that matrix.) Consequently, once a probability distribution is selected on SN, so as to define the
'at random' condition of the first step, the spectral functions of any correlation matrix defined by
the second step may be directly studied. Note that this approach does not apply to other
numerical attributes of C of possible interest, such as its individual entries; their distribution
naturally depends in part on those of the V and R matrices.

4.1 Method of Generation

From the preceding discussion we see that a probability distribution A must be specified on
the simplex SN . Then a sample X drawn from 1i will be a random spectrum. Having no reason to
weight any region of SN more than another, we will take A to be the uniform distribution on SN,
and denote by

X - U(SN)

a point K so chosen. Two tasks remain:

- specify A analytically
- specify A operationally

This latter task simply means to prescribe a method for a computer to make these draws in
terms of an assumed capability to generate pseudorandom numbers - U[0,1].

The analytical specification of A depends on (a special case of) the general theory of order
statistics and spacings. Here we only need the case of independent samples from the uniform
distribution. Thus let U(i) <.- < U(N-1) be the order statistics of a random sample from U([0,l]).
Define u(0) = 0, and U(N) = I. As shown by Wilks,35 the joint distribution of these order statistics
is uniform over the simplex {0 <x 1< ... <XN..-<l1 in RN-I. Then the spacings of the sample are
defined by

si = %) - u(i-1), I < i <2 N
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Observe that for each sample, the spacings are positive numbers that sum to I. It was also
shown by Wilks that the spacings vector (sIj....,SN-) is uniformly distributed over the simplex

N-1

to <xi, xi <}

in RN-1. Now, for fixed N, the mapping

T(XI .... XN.-) = (XI ..... XN.I,Il- -  - .- XN.-)

carries this simplex bijectively onto the simplex 10 xi, I xi I0 in RN, and carries over the
uniform density (by an elementary change of variables).

The upshot of the preceding paragraph is that, for fixed N, the uniform density A on the
simplex SN can be specified analytically as the distribution of the random vector

NT(sj,...,sN.j). (4.1)

And, of course, it follows that IA can be specified operationally in terms of pseudorandom
number generator, and a sorting routine.

There is by now a fairly extensive literature of spacings (sometimes known as 'gaps', 'cover-
ages', or 'random division of an interval). This topic can be traced back to the turn of the cen-
tury to the work of W. Whitworth on the distribution of the largest spacing. His result was util-
ized by Fisher (1929) to give a significance test for the largest amplitude in a numerical harmonic
analysis of a time series. (In fact, Fisher's test turns out to be the uniformly most powerful sym-
metric invariant decision procedure against simple periodicities. More recent work is concerned
with compound periodicities, and hence with the distribution of other functions of the spacings
besides the maximum. Interested readers should consult the papers of A. Siegel, for example,
Reference 36. We will not detail any of his work here, we merely wanted to draw attention to
the unexpected link between the spacings concept and time series analysis.)

In the later 1930's and then the 1940's several authors including P. Levy, M. Greenwood,
and P. Moran worked on distributions of functions of spacings. Most of this work originated as
specific problems in applied statistics. The best review of all this is that of R. Pyke,37 although at
a fairly high technical level. Other useful works include References 38 and 39. These references
point out, among many other things, alternative analytical specifications of spacings. For
instance, if Yl,....YN are independently exponentially distributed with arbitrary mean, and
z = y1+ + YN, then the random vector

z-1 (Y1,---,YN)

is distributed as the spacings vector T(sj, ... , SN . Hence random spectra can also be generated
by use of exponential variates. From this it follows that spacings can also be simulated from the
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(normalized) interarrival times of a Poisson process {N(t): t '> 0} with N(0) r 0. Namely, if Tk is
the elapsed time between the (k-l)-st and the k-th event, and t > 0 is fixed, then the conditional
distribution, given N(t) = n, of

t-1(Tl....Tn-, t - TN(t))

is the same as the spacings vector. This is a classic construction of spacings with important mod-
em applications to the limiting behavior of empirical processes. 37

The distribution of spacings and some functions thereof is also briefly discussed in Kendall
and Moran.40 Naturally, geometric aspects are stressed. For instance, the joint distribution of the
spacings is, with proper scale factor, exactly that of the lengths of the N perpendiculars from a
random point inside the simplex SN to the N sides. The authors go on to discuss some situations
where probabilities can be computed from simplicial geometry.

4.2 Distribution of Eigenvalues

Pursuant to the foregoing discussion we take as a random spectrum X 6 SN, N times the
random vector of spacings defined by a random sample of size N - I from the standard uniform
distribution. We denote this vector as A = (X i,....AN). In this short section we discuss the distribu-
tion of the Ai, while in the next two sections we consider that of certain functions of the ki
related to correlation matrices C with o(C)= X.

We first note that the Xi are exchangable random variables since, because of the uniform dis-
tribution of A on SN , that distribution is unchanged under permutation of its components. It fol-
lows that the Ai are identically distributed and, using the formula for the least order statistic, the
distribution function FN is given by

N-I
FN(t) =1 - -- ) (4.2)

N

Thus, for large N, Xi is approximately exponentially distributed with mean 1. From Equation (4.2)
we can conclude that

N-I
E(Xi) = 1, var(Xi)= N I

N+lI

for each i.
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Expressions for the joint distribution of the Xi have been given by Steutel.39 Namely,

(IIYai)N- 1, a <l

Pr(XI >aI,...,XN>aN) =
0 if not

and

N aj N-1
Pr(,XI < a t ..... ,XN  a N) = I--: (!- )

j~ l

N ai + a k  N-I
+ 1 (1 N ) -+..
j,k= I

These formulae are derived by Laplace transform techniques and the relation, already alluded to
in Section 4.1, between the spacings distribution and that of certain exponential variates.

In similar fashion one could go on to describe the joint distribution of pairs ()i,Xj), the
associated covariance, etc. Here we will just note that

-1
corr(Xi,X) = - I

But actually all such formulae of likely interest follow directly from the multiple moments
formula

P. P NPR(N)p + )I)... r(PN+ 1)E(XI...N) (p + N) (4.3)

where p = Pl+...+ PN. This expression can either be derived by the Laplace transform method of
Steutel, 39 or, somewhat more directly and geometrically, as in Kendall and Moran (Reference 40,
page 34).

4.3 Distribution of Norms

We continue with the assumption that we are dealing with a correlation matrix C whose
spectrum A has been chosen randomly according to U(SN). The issue now is the distribution of
the norms IICII and IICIIF, as defined in Section 3.1.

Let us begin with I I C II F2  X ;X which, for both typographical and historical reasons, we
will denote by GM(N). In the statistical literature this quantity is known as the Greenwood-
Moran statistic, after the authors of References 41 and 42. It was originally proposed as a test
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for uniformity in response to a problem in epidemiology (time intervals between outbreaks of an
infectious disease). Moran42 derived a general formula for the moments of GM(N); it was re-
derived by Steutel.39 For us, it is enough to use the moments formula (4.3) to obtain

2N2

E(GM(N)) 
=

N+I

E(GM(N) 2 = 4N4 (N + 5)
(N + 1) (N + 2) (N + 3)

and hence

4N4 (N-i1)
var(GM(N)) 

=

(N + 1)2 (N + 2) (N + 3)

: O(N)

If now for fixed N we take a large sample of size n of random correlation matrices C with
spectra X - U(SN), we would expect I ICII F to be approximately normally distributed with mean

_2N 2

and variance about 1/2n. This is a consequence of general theory concerning asymptotic
distribution of continuous functions of sample means (Reference 35, page 259). In the particular
cases of N = 5 and 10, we expect, in a large sample, to have ave(I ICI IF) about equal to 2.89 and
4.26, respectively. The reader may look back to the first two columns of Table 1 for the actual
result of a sample of size n = 1000.

A second point to be made about GM(N) is that it is (slowly!) asymptotically normal, a
result due originally to Moran, 42 and reproved by a more general method by Darling,4 3 see also
References 37 and 39. As usual, Pyke has the most complete but also most opaque discussion of
this topic. Once this asymptotic normality is established, the corresponding property of

-G, -M(N) = I I C I IF can be worked out by general theory concerning smooth functions of
asymptotically normal variates. In fact, since GM(N)/2N has mean N/(N + 1) - , and variance
G2 = O(1/N), its asymptotic normality implies that V/GM(N)/2N is asymptotically normal withN2

mean 1, and variance aO/4. Hence \/GM(N) is asymptotically normal with mean v'N, and
variance (I / 2)No - 1 / 2.

Next we consider the spectral norm IC II, for an N X N correlation matrix C with random
spectrum as usual. Since I CII = Xmax, the maximum eigenvalue of C, the distribution of I ICII is
that of N times the maximum spacing determined by a random sample of N - I points from the
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standard uniform distribution. We let VN denote this maximum spacing, so that Xm. I 1CI 
NVN.

As already noted in Section 4.1, the distribution of VN goes back to Whitworth (1897), and
has a history of interesting statistical applications. A convenient source for this distribution is
Reference 43, wherein one can also find a derivation of the asymptotic behavior, due originally
to Levy (1939). We find that

N N kx N-

PAN VN X)- - k) N

where (t), = max(t,O). From this one could derive the mean and higher moments, as needed. As a
somewhat neater alternative, we can appeal to some well-known relations between the
distribution of the spacings and certain exponential variates, as briefly reviewed in Section 4.1.
Now making use of the fact that the sum of exponential variates yi is gamma-distributed, and the
known distribution of the order statistics from the exponential distribution, we can obtain

NVN - N max{yj}/z.

Also, a formula was given by Devroye."

N
vN - ( Yi/ i)/ z

In both cases z =Y +.. .+ YN. From all this we can deduce that

E(Xmax) E(NVN) = l + I + + I
2 N

log N + Y

where y = .577 ... is Euler's constant.

Finally, the Levy-Darling asymptotic formula for the maximum spacing, scaled to apply to
the maximum eigenvalue of the matric C is

Pr(NVN < log N + x) - exp(- e- x)

as N-- . From this, it follows that

var(NVN) - 7-2/6

as N- .
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Thus we have obtained the exact means of the norm functions IIC II2 and I IC II, and the
asymptotic behavior of these, along with I I C I IF, as N-o. In particular, we have observed that
the Frobenius norm tends to normality, while the spectral norm tends to obey an extreme value
distribution.

4.4 Condition Number Expectation

We continue to study an N X N correlation matrix C with random spectrum. Now our focus
is on the distribution of the condition number K(C), as defined by Equation (3.6). As we know
from Equation (3.8), K(C) = kmax/ Xmin, the ratio of the largest to the smallest eigenvalue of C.
We have just described the distribution of kmax = I I CI I. In fact the joint distribution of (Xmax,

Xmin) can be inferred from the work of Darling,43 in the following form:

Pr(Xmin > x, kmax < y)

N N-j j N-I

-J ( N yN+

From this, by letting y I N, we obtain the distribution for the least eigenvalue:

Pr(min > ) = (1 - x)N 'I 0 < x < (4.4)

This formula yields the moments of Xmin as

E(Xmin) = I/ N

var(Xkmin) = (N - I)/N 2(N + 1)

We might pause here to collect together the formulas giving the expected behavior of the
eigenvalues, and their important functions, as a function of N, for N X N correlation matrices
with random spectrum. Namely, we have seen that

E(i) = I XliXi N

E(Xmax) - log N + y

E(Xmin) 1/N and

E(JX2)  2N
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Returning now to the joint distribution of (X'ax, rAi), it can also be inferred from
Reference 43 that these quantities are asymptotically independent, as a consequence of the
formula

x
Pr('min > x , Xmax < log N - log y)

- exp (-x- y),

as N--e. This permits us to write, for large N,

E(K(C)) = E(Xmax/'min)

E(Xmax) E(1 / Xmin).

However, although the first factor is finite, as we know, the second is not:

E(I/Xmi,) = f x7 Jx (I -(I - x)NI) dx
0

" (1 -0 x)-N-1 dx

0

= (N- 1) f (+ ... ) dx= + oo.
0

This observation suggests that the condition number K(C) may not have a finite first

moment. Additional grounds for such suspicion can be based on its validity at the other
extreme case where N = 2. In this simple case the assertion goes as follows: if a single
number s is drawn at random from the interval [0, 1], and U (respectively V) is the min
(respectively max) of is, l-s}, then the radio V/U obeys the distribution

t- I
Pr(V/U < t) = I

t+ I

and so has infinite expectation. This formula is derived by Feller (Reference 45, page 24). We
now generalize this fact to the case of arbitrary N.

Theorem Let C be a correlation matrix with random spectrum. Then the condition number

K(C) has infinite expectation.
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Proof. In the notation of Section 4.1 we let 0 < U(1) < u(2) < ... < U(N. 1 ) < I be the order
statistics of a random sample of size N - I from the standard uniform distribution. The joint
distribution P of these statistics is the ordered (N - )-variate Dirichlet distribution (Reference 35,
Section 8.7), and is uniform over the region

fl = Ix: 0 <t X1 2 <... < XN.A <

in RN. Therefore,

r . maxtu(i), U( 2) - u(I),," - U(N-1) dPE(#c(C)) -.. nln.

max{...N( 1 .. fdu(j) ... du(N-J)

T U(1)

where T is the subregion of (I defined by

x, - min{x 2 - x1, x3 - x2 ,.... 1 - XNI},

and we have used that the maximum spacing > 1/N. Now, the last multiple integral over T
exceeds, for sufficiently small e > 0, the integrated integral

r-(N-2)x l-(N-3)x I-xI
f f dX2  f dx, ... f dX1

0 2x, xI + X2  xI + XN.2

=f 1/(N -)! + xlq(x1) dx1
xdx

Xl

0

where q is a polynomial. This last integral is clearly divergent. QED

This completes our discussion of correlation matrices with random spectrum.
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5. CORRELATION MATRICES WITH RANDOM GRAM STRUCTURE

In this final section we discuss random Gram matrices, as defined in Section 1.2, and briefly
discussed in Section 2.2, along with some simulation results. We will follow the same plan as in
the preceding section, namely, generating such matrices and distribution of certain related ran-
dom variables. Finally we will make a few comparisons between the sample behavior of the two
types of random matrices.

5.1 Method of Generation

We recall from Section 1.2 that an N X N random Gram matrix C has the form

C = TT* (5.1)

where the rows of T are i.i.d. vectors distributed uniformly on the sphere SN -1 in RN. That is,
for each row 1, of T, we have

, - U(SN- t )

So, just as in Section 4.1, the first question is how to express such random vectors in terms of
standard univariate random variables.

This is a well researched problem, with contributions dating back at least 30 years. A short
paper by Marsaglia 46 has a review of these early contributions, along with an improved method.
More recent references are the pragmatic paper by Rubinstein, 47 and the extensive book of
Devroye.48 Again we distinguish between the analytic and the operational specification of
U(SN-I). The basic analytical result is that if X is a continuous radially symmetric N-dimensional
random vector, then its projection on the sphere is uniformly distributed, that is,

X/IlXll - U(SN '1)

In particular, we can take X - N(0,I), the standard spherical multivariate normal distribution.
Operationally, the components of X can be generated by any of several standard pseudorandom
normal variate routines. These eventually utilize pseudorandom uniform variates. The latter can
also be used more directly to generate pseudorandom U(5N'1) vectors, as is pointed out in (Ref-
erence 46 or in Reference 48, Chapter V). These are in addition to the brute force acceptance
rejection method, which tends to be very inefficient for large N (N > 5, say). However, we will
stick with the projected normally distributed random vectors.

Suppose now that we have a random vector X - U(sNI). It will be important to know how
the components of X are distributed. It turns out that each

I N-I
2,, Beta( I , N ) (5.2)

and that the density function of xi is

CN(I -t2)(N-
3)/,2  Itl < (5.3)
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where CN = r((N/2)/(r(l/2)F((N-I)/2)) is a normalizing constant. It is interesting to observe that
these distributions vary considerably with dimension. In particular, we see that xi follows an arc
sine distribution when (x1 ,x2) - U(SI), while xi is uniform on (-1,1) when (xl,x 2,x3) -,, U(S2). As
N increases beyond 3, the density is unimodal with an ever steeper peak at t = 0.

We might note here that the joint density of two or more of the xi is also available, as a
consequence of some work of Stain. 49

As a consequence of these facts we have the following geometrical lemmas: if X, Y are inde-
pendently and uniformly distributed on SN1, then

E(<X,Y>) = 0 (5.4a)

E(<X,Y> 2 ) I/ N (5.4b)

and

var(<X,Y> 2 ) = 2(N - 1) (5.4c)

N2(N + 2)

Indeed, Equation (5.4a) is a consequence of the so-called "formula of total expectation,"

E(f(X,Y)) = E (E(f(X,Y)IX))

for scalar functions of two random vectors. The other two equations follow from realizing
<X,y>2 as the squared length of the projection of a random point in SN -l on a random axis,
along with standard properties of the beta distribution. This geometrical information will be used
below in the next two sections.

5.2 Distribution of Norms

As earlier, in Section 4.3, we will study the distributional behavior of 1CII F and I CII, where
C is now a random Gram matrix of the form of Equation (5.1), with the rows of T uniformly
distributed over the unit sphere of appropriate dimension.

The study of IICII: is greatly facilitated by the preceding results, since these imply that the
square of each off-diagonal entry of C has the beta distribution of Equation (5.2). It follows
immediately that

1 N(N-l1)
EIICII2F) = N + 2

N 2

= 2N - 1 (5.5)

However, a variance formula is not so immediate, as we indicate next.

We consider the second moment of IICII about the origin, that is,

N-1 N
E(JJCJJ = E ((N + 2 F )2). (5.6)

i=l j=i+3
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Recalling that the first two moments of the beta distribution B(a,b) are a, (a + b) and
a(a + l)/(a + b)(a + b + 1), respectively, we have, upon expansion of Equation (5.6)

E(11CII) = N2 + 4N • I-" N(N - 1)/2

3
+4. 3 N(N- 1)/2 (5.7)

N(N + 2)

+ 4 N(N - 1)/2 [(N(N - 1)/2) - 1] • x

where 'x" is a generic notation for E(cij2 ckI2 ), for i 6 k or j # 1. Certainly if both i * k and

j # 1, then x = I/N 2 , by independence.

In the remaining cases we are in the following situation. We have 3 random vectors u, v, w

i.i.d. U(SN-I) and we are considering the bivariate distribution of (<u,v>, <u,w>). This distribu-

tion has also been considered by Stam,4 9 who gave a formula for the density of the trivariate dis-

tribution of (<u,v>, <u,w>, <v,w>). He also proved that this distribution converges in total
variation to the standard normal distribution on R3 . In view of the complicated nature of the

aforementioned density, and of the rather rapid approach to the normal, as shown by simula-

tions, we will ignore possible weak dependencies for small N, and use the approximation

x = I/ N2 throughout Equation (5.7). Therefore, after collecting terms there we arrive at the

approximation

4N-I 2
E(IICII 4) 4N 2 - 4N - 1+6 + 2 (5.8)

Simulations show this to be actually very accurate for N > 5. (In fact, extensive statistical testing
never permits rejection of the hypothesis that the variates <u,v> and <u,w> are uncorrelated,

for any N.) Finally we see that

N-l 2
var (IICII - 6 - + 2 -N +

which, of course, is approximately 4 for large N.

These formulas for the first two moments of IICIIF 2 invite comparison with the correspond-
ing formulas for correlation matrices with random spectra developed in the preceding section.
While the means are very close, and asymptotically equivalent, there is a distinct difference in the
behavior of the variances. Namely, the variance of 1ICI1F 2 when C has random spectrum varies as
4N, approximately, while that of IICJIF 2 when C is random Gram is asymptotically constant.

As earlier in Section 4.3 we expect that for fixed N, IICIIF is approximately normal with
mean V/(2N - 1), and this is borne out by simulations.

Writing ICIl in the form used in Equation (5.6), and appealing to the central limit theo-
rem, the asymptotic normality follows readily:
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IC f "- Normal (2N - N, 4 -2N + )
N2+N

for large N. As in the earlier section we could also establish the asymptotic normality of IICI F,
but at this point that can be left to the interested reader.

We now want to turn to the issue of the distribution of the spectral norm ItCJ of a random
Gram correlation matrix C. This particular topic brings us to the edge of a large and active field
of research on the spectra of random matrices; see for instance Section II of the AMS Confer-
ence proceedings. 50 This area has a long history as indicated in the papers of Girko51 and
Geman 52 and their references, as well as the AMS volume. In turn it relates to many studies in
the multivariate statistics field of spectral behavior of sample covariance matrices, see for instance
T. Anderson's book.1

The essential observation runs as follows. We have C = TT* as defined in Equation (5.1).
Then the columns of T* are independent samples from the uniform distribution on SN-1, and
hence the matrix

NSN = NTT = N- I tktk

k= I

is the sample second moment matrix for such a distribution. (Here tk is the kth row of the
matrix T.) Now TT* and T*T always have the same eigenvalues, and hence, as 'a special case,

IICII = NISNII (5.9)

With this observation we can now refer to the considerable body of previous work men-
tioned in the preceding references, and also to the book of Watson. 53 None of this seems to be
exactly what we need. In particular, it is unlikely that we can ever know the precise distribution
of 11CII for any fixed N. However, there are many asymptotic results. Here we will just take note
of an improvement of Geman's theorem by Yin, Bai, and Krishnaiah, as referenced by Yin and
Bai in Reference 50. Namely, let X be a p X n random matrix with i.i.d. entries, n = n(p) an
increasing function of p with

lim n(p)=y, 0<y<o

Suppose that the entries of X have mean 0, variance 02, and finite fourth moment. Then

lim II-h" X p XI P (1 + a/')2 a2 (5.10)

p c

almost surely.

We will now advance some reasons to support the conjecture that

limliCil = 4 (5.11)
N-o
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almost surely when C is an N X N random Gram correlation matrix. First, from Equation (5.9)
we have

llCiI NISNII = IT*TII

1N P~1 I

where Xp = - T*, p = N, and the columns of T* are i.i.d. vectors U(SN-I). Now the covar-
iance matrix of any such random vector is (1/ N)IN, where lN is the N X N identity matrix. [This
can be seen by noting that the uniform distribution is invariant under unitary transformations,
hence the covariance matrix commutes with all unitaries and so must be a multiple of IN . That
the multiple is I/ N follows from Equation (5.2).] Thus if the entries of each column were
genuinely independent we would be in the situation where the limiting formula (5.10) applied,
with y = a = 1. In so far as this independence is present asymptotically, and that condition is suf-
ficient, Equation (5.11) would follow.

A second approach is to begin with a random matrix G = [gij], I < i, j < N, with i.i.d.
entries gij, each a standard normal variate. By Geman's theorem

lim II G G*l1 = 4,
N-c N

almost surely. Now let D be the N X N diagonal matrix with ith diagonal entry = 1/Iii th col. of

Gil, and set T* = GD. Then

ii ci = N IISNIl

= IIT*Tii = IIGD 2G*II

= il I G(ND 2) G*II
N

and, in so far as ND 2 - IN for large N, we may expect Equation (5.11) to hold. This approach
is, in effect, simply a more rigorous interpretation of the preceding approach, showing just how
the lack of dependency down the various columns of C appears. Of course, there is a strong rea-
son to believe that ND 2 - IN 0 in some probabilistic sense, as N - 00, based both on simulation
for N < 200, and on order statistic analysis beginning with the distribution of Ilith col. of Gil 2 as
chi2(N).

Finally, we ran a brute force simulation for N < 100, and obtained the empirical curve of
E(IC II) against N shown in Figure 1. Each data point for N <, 50 is based on 500 trials, while
those for N = 75, 100 are based on 50 trials. The sample coefficient of variation is shown next to
the data points.

5.3 Condition Number Expectation

In Section 4.3 it was shown that the condition number of a correlation matrix with random
spectrum has an infinite first moment. In the present section we will demonstrate the analogous
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Figure 1. Empirical spectral norm of C= TM

fact for random correlation matrices of Gram type. The numerical results reported back in Sec-
tion 2.2 (refer to Table 1), along with their theoretical result just mentioned, certainly have pre-
pared us for this fact. Recall that the key empirical difference between the two main types of
random correlation matrices was, in fact, the excessively ill-conditioned nature of random Gram
matrices. We will discuss some other aspects of the spectral behavior of such matrices in the next
section.

Theorem Let C be a random Gram correlation matrix. Then the condition number K(C) has

I infinite expectation.

Proof Making use of Taylor's inequality (3.15) we have C = TT* and

K(C) -- IIC1 11C'I 11 I/rmin df
t> l/d?2

where di =_ dist(ti,Mi), ti = ith row of T, so each ti is i.i.d. U(SN-l), and M i = span{tj: j 6 i.}Now
since condim(Mi) = I in RN, di is the magnitude of the projection of t, on the line M i.Let u be
a unit vector in this subspace; then

d2 = <t1,3>2
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That is, d 1
2 is the squared length of a random point on a random direction, and, as such, it has

the distribution of Equation (5.2), with moments given by Equation (5.4). See also Reference 10.
Therefore,

E(K(C) E(l/d2)

1 N-3

2 2
1 t (I - t) dt

I I N-I t0 B(_, I )
2 2

and this integral clearly diverges at 0. QED.

5.4 Empirical Spectral Behavior

This final section addresses the question "How random is the spectrum of a random Gram
matrix?'. Now, in one sense, this question has already been answered by the results of Sections
4.3 and 5.2. Namely, in those sections we derived the behavior of IICIIF2 , IICIIF, and 1lC11 for
both types of random correlation matrices. Expressing these functions of C in terms of the eigen-
values shows that, not all spectral functions behave the same, and in particular, that random
Gram matrices do not have a random spectrum. Below, we will briefly discuss some other aspects
of this question.

Let us begin by considering the behavior of the smallest eigenvalue AN of an N X N random
Gram matrix C. As in Section 5.2 there exists some related theoretical work in the literature
(e.g., Reference 54), but again, it is not directly applicable to our situation. In view of the appar-
ent boundedness of IICiI as N-=o, and of the simulation results from Section 2.2 which suggest
that random Gram matrices are much more ill-conditioned than matrices with random spectrum,
we might expect XN to be much smaller than the corresponding value from a correlation matrix
with random spectrum. The distribution function of the latter is

F(x) = I - (l- x)N - 0 <x < I

as follows from Equation (4.4), and we have

E(Xmin) 2 = 1/ N2 - var(kmin)

as earlier noted.

Since we have, under the null hypothesis that the spectral behavior of C is random, the
exact distribution and first two moments of AN, we can test this hypothesis by a variety of
standard statistical tests. In particular, using the Kolmogorov-Smirnov one-sample test with 100
simulated random Gram matrices of various orders (N <, 20), we are led to decisively reject the
null hypothesis, at the 99 percent level.

Instead of considering the extreme eigenvalues Xi, AN of C, we can inquire about the behav-
ior, in some suitable sense, of the entire spectrum a(C). For example, we have already looked at
the statistic
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and noted that asymptotically its mean behavior is that of a matrix with random spectrum, but
its second moment behavior is quite different. Another approach is along the following lines.
Beginning with the N X N random Gram matrix C, and its spectrum a(C) { 1, ... , AN , we
can invert the spacings method of Section 4.1 to arrive at a sample of points {x1 , . .N. 1i in
the unit interval. The transformation is

I
Xk = _('AN-k-1 +  N •*A + '-I + 'N)

for I < k < N - I. Under the null hypothesis this set of x's is a sample from the uniform distri-
bution, and various statistics computed from this sample can be used for a test.

As an example, we considered Neyman's test 55 for uniformity. Fixing N, we generated a
batch of 1000 random Gram matrices C, obtained their spectrum and the resulting points
X . N. 11 in [0,1]. Then Neyman's statisti,

N 2 2 

was computed, where the vj are the sample Fourier-Legendre coefficients when the density func-
tion f (from which the x's are drawn) is expanded in terms of Legendre polynomials:

f(x) = c exp(l + . cj Lj(x)).

The motivation and theory of this test is discussed in the reference, and will not be given here.
The distribution of N2 is known approximately, and is asymptotically chi2(2). The null hypothesis
is to be rejected for large values of N2.For each N we calculated the fraction of the 1000 sam-
ples that exceeded various percentage points of the N2 distribution, with the results indicated in
Table 2. It is evident from these figures and the large number of trials that the null hypothesis of
uniformity must be rejected. A closer examination of the data reveals that not only is there a
very small eigenvalue AN, as noted above, but in fact there are enough small eigenvalues to pull
the sample mean 3 far enough below 0.5 to greatly inflate the value of v, (precisely,

v1 = \/-2)x-I)
2

where n = sample size = 1000, here). Incidentally, the sample coefficient of variation of the Ney-
man statistics decreased steadily from 0.27 at N = 5 to 0.045 at N = 30, showing very little scatter
about the increasingly large values of N2

Finally, we offer two comments about the empirical behavior of the condition number of
random Gram matrices. First, for various N( < 20) we generated batches of 1000 each of random
Gram matrices and correlation matrices with random spectra, and performed a Kolmogorov-
Smirnov two-sample test on the respective condition numbers, to test the null hypothesis of a
common distribution. This hypothesis was decisively rejected for all values of N, this rejection
continued when the samples were subjected to trimming.
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Second, bearing in mind the condition number bounds established in Section 3.2, we studied
by simulation the tightness of the upper bound (3.18). That is, for various N( < 50) we generated
batches of random Gram matrices, computed their condition numbers, the co-linearity measure
on the right hand side of Equation (3.15), and then their ratio as in Equation (3.18). The results
are displayed in Table 3. They suggest that the admittedly crude upper bound in Equation (3.18)
can indeed be reduced, and perhaps even be replaced by a term that is of order o(N).

TABLE 2

Fraction of Neyman Statistics Exceeding Various
Percentage Points, and Sample Average

Mean
N (percent) 50 90 95 Mean____ ___ ____ ___ ____ ___ N22

5 99.8 45. 10.5 4.3

8 100. 98.5 84.4 7.0

10 - 100. 99.5 8.9

15 - - 100. 13.3

20 - - 17.7

30 - 26.5

TABLE 3

Empirical Ratio of Condition Number of Colinearity
Measure for Random Gram Matrices

N Batch Size Sample Sample

Mean Ratio Coeff. of Var.

5 1000 5.20 .21

10 1000 8.82 .25

20 100 15.86 .24

35 100 22.65 .24

50 100 29.28 .22
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6. SUMMARY

Let us summarize not only the foregoing technicalities, but also the place of this material in
a larger scheme. In addition, we will point out several issues that remain to be resolved.

As noted at the outset, our interest in random correlation matrices stems from their interpre-
tation as covariance matrices of purely random or 'average' (standardized) signals. A research
project now underway has as its goal the evaluation of the efficacy of various group-theoretic sig-
nal processing algorithms. One ingredient that must be specified before a well-defined question
can be posed in this context is a definite signal model. As remarked in the Introduction, such
models can either be defined by a few (typically < 2) parameters, or they can be essentially non-
parametric. A further possible subdivision of this latter class is into random stationary signals, or
into purely random signals. The corresponding covariance matrices are then random correlation
matrices with, in the first case, a Toeplitz structure. We have not discussed such special random
matrices because it appears that, for practical purposes, most such behavior can be at least
approximated by, for example, varying the parameters in an AR(2) signal model. Nevertheless,
the question of generating random Toeplitz correlation matrices, and the statistical behavior of
the corresponding entries, spectral functions, etc., is interesting, and is being studied, with results
to be reported elsewhere.

We therefore have chosen to concentrate on random correlation matrices of the two princi-
pal types defined in Section 1.2, and studied in detail in Sections 2, 4, and 5. We observed early
on that random Gram matrices exhibited a comparatively wild spectral behavior relative to corre-
lation matrices with random spectrum. As we discovered later, this behavior is due to the pres-
ence, on average, of several much smaller eigenvalues than is consistent with the hypothesis of a
random spectrum. In fact, a variety of both theoretical and empirical results shows that random
Gram matrices do not have random spectrum; these are reviewed in Section 5.4.

In addition to collecting together numerous known results from the general statistics litera-
ture, and interpreting them in the present context of random correlation matrices, we have devel-
oped some new theoretical results. Specifically, in Section 3.2 we have extended the earlier work
of J. Taylor on condition number lower bounds, and we assessed their tightness. This result is
strictly deterministic. We then used this bound to show that the condition number of random
Gram matrices (of a fixed size) has an infinite first moment. In view of our earlier empirical
observations, this conclusion was not a complete surprise. Yet it also turned out that correlation
matrices with random spectrum also have infinite first moment (for each fixed dimension N >, 2,
the case N = 2 being due to W. Feller).

We might offer an additional comment on the condition of random Gram matrices. Namely,
referring back to the basic definition (Section 5.1), we could allow the row vectors ti there to be
drawn randomly from the unit sphere in a larger dimensional space. Geometric intuition suggests
that with more 'room' in the sample space, collinearity should be less of a problem, with conse-
quent improvement in conditioning. Numerical experiments show that, to an extent, this expecta-
tion is fulfilled. For example, in constrast with the data reported in Table 1, the mean (respective
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median) condition number of 500 5 X 5 random Gram matrices based on vectors drawn uni-
formly from the sphere S9 is 11.6 (respectively 8.7). The corresponding values for 500 10 X 10
random Gram matrices based on vectors drawn from S' 9 are 17.5 (respectively 15.2). However, it
is not yet clear whether such higher dimensional random Gram matrices have random spectrum
(eventually perhaps, but not initially!), or whether they have a finite first moment. This appears
to be an attractive research area.

Finally, we note that some unresolved issues remain. In addition to specific technical ques-
tions, such as the best bound in Equation (3.18) (that is, the exact relation between the condition
number of a Gram matrix and its Taylor lower bound), and validation of the conjectured limit
of the spectral norm of large random Gram matrices in Equation (5.11), there is the issue of the
intended application of these random correlation matrices to specific statistical testing procedures
and simulations. In the present case the area of interest was described in the introduction. These
matrices will serve to model random signals, the latter in turn serving as inputs to various signal
processors defined by group filters and transforms, the objective being to assess the relative value
of different groups of a common order (especially N = 2n) for specific signal processing tasks
such as Wiener filtering, decorrelation, data compression, etc. However, the question of whether
one type of random correlation matrix should be preferred to another, for this particular applica-
tions, remains to be settled.
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